
Context Synthesis

Dimitra Giannakopoulou2 and Corina S. Păsăreanu1
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Abstract. With the advent of component-based and distributed soft-
ware development, service-oriented computing, and other such concepts,
components are no longer viewed as parts of specific systems, but rather
as open systems that can be reused, or connected dynamically, in a vari-
ety of environments to form larger systems. Reasoning about components
as open systems is different from reasoning about closed systems, since
property satisfaction may depend on the context in which a component
may be introduced.
Component interfaces are an important feature of open sytems, since
interfaces summarize the expectations that a component has from the
contexts in which it gets introduced. Traditionally, component interfaces
have been of a purely syntactic form, including information about the
services/methods that can be invoked on the component, and their sig-
natures, meaning the numbers and types of arguments and their return
values. However, there is a recognized need for richer interfaces that
capture additional aspects of a component. For example, interfaces may
characterize legal sequences of invocations to component services.
Generating compact and yet useful component interfaces is a challeng-
ing task to perform manually. Over the last decade, several approaches
have been developed for performing context synthesis, i.e., generating
component interfaces automatically. This tutorial mostly reviews such
techniques developed by the authors, but also discusses alternative tech-
niques for context synthesis.

1 Introduction

With the advent of component-based and distributed software development,
service-oriented computing, and other such concepts, components are no longer
viewed as parts of specific systems, but rather as open systems that can be
reused, or connected dynamically, in a variety of environments to form larger
systems. Reasoning about components as open systems is different from reason-
ing about closed systems, since property satisfaction may depend on the context
in which a component may be introduced. As a result, a component satisfies or
violates a property only when the property is satisfied or violated by the com-
ponent irrespective of context. For all other cases, meaningful analysis would
consist of synthesizing a characterization of all contexts in which the component



satisfies the desired property. We refer to such analysis as “context synthesis”,
and the result of the synthesis a “component interface”.

Component interfaces therefore summarize the expectations that a compo-
nent has from the contexts in which it gets introduced. Traditionally, component
interfaces have been of a purely syntactic form, including information about the
services/methods that can be invoked on the component, and their signatures,
meaning the numbers and types of arguments and their return values. However,
there is a recognized need for richer interfaces that capture additional aspects
of a component. For example, “temporal” interfaces [3], which are the focus of
this tutorial, describe legal sequences of service invocations or method calls to a
component. The purpose is to document (for clients of a component) what se-
quences of calls could lead to undesirable component states and should therefore
be avoided.

Generating compact and yet useful component interfaces is a challenging
task to perform manually. Over the last decade, several approaches have been
developed for generating component interfaces automatically. This tutorial re-
views techniques for interface generation of components with respect to safety
properties. We discuss in depth some techniques developed by the authors, but
also present and discuss alternative techniques, and provide references to some
new trends in this research area.

Context synthesis is closely related to compositional reasoning methods for
model checking. Compositional verification presents a “divide and conquer” ap-
proach to the state-explosion problem [9] associated with model checking. It
decomposes the properties of the system into local properties of the system
components. Each component is checked separately against its local properties;
the combination of these simpler checks guarantees the correctness of the global
property on the entire system.

Analysis of components in isolation for compositional verification will often
return results that are not meaningful. The reason is again that components
usually rely on some features of the environments in which they are introduced.
One therefore needs to incorporate some knowledge of the contexts in which
the components are expected to operate correctly. Assume-guarantee reasoning
[19, 24] addresses this issue by making explicit use of assumptions in component
verification. Assumptions are akin to interfaces and they document expectations
of a component from its environment in order to fulfill its guarantees. Assume-
guarantee rules are then used to merge the results of individual component
verification steps for verification of system-level properties.

The fundamental difference between an interface and an assumption in the
context of reasoning about safety properties, is that an interface summarizes the
component with respect to all the possible environments in which the component
may be introduced. On the other hand, an assumption serves as a potentially
imprecise interface that only needs to reflect interactions with a specific envi-
ronment, representing the rest of the components in the analyzed system. We
note that in the context of compositional verification, all the components that
participate in the verification problem are known and available. As a result,



context synthesis takes the form of assumption generation in compositional ver-
ification, and can be performed more efficiently than interface generation due to
the availability of an actual component environment.

The rest of this paper is organized as follows. We provide background for
our work in Section 2, followed by a characterization of precise (safe and per-
missive) component interfaces in the context of safety property checking for
finite state systems in Section 3. In Section 4, we present several algorithms for
automated interface generation. A construction of what we call the “weakest as-
sumption”, corresponding to a precise component interface, is presented first. We
then present an alternative approach that uses the L* learning algorithm to com-
pute component interfaces in an iterative manner. In Section 5 we address the
problem of generating interfaces for infinite state components. Context synthesis
is subsequently discussed in the context of compositional verification in Section
6. Finally, we discuss implementation and applicability of these techniques and
present some open research topics in this domain in Section 7.

2 Background

In this section we introduce labeled transition systems (LTSs) [20], the formalism
that we use to model components. We present the definition of traces and parallel
composition for LTSs and also present how safety properties are checked. We
then introduce assume-guarantee reasoning and the L* algorithm that we use to
automatically synthesize interfaces and assumptions.

2.1 Labeled Transition Systems (LTSs)

Fig. 1. Example



Let Act be the universal set of observable actions and let τ denote a local
unobservable action. Let π denote a special error state, which models safety
violations; the error state has no outgoing transitions. Formally, an LTS M is a
four-tuple 〈Q,αM, δ, q0〉 where:

– Q is a finite non-empty set of states
– αM ⊆ Act is a set of observable actions called the alphabet of M
– δ ⊆ Q× (αM ∪ {τ})×Q is a transition relation
– q0 ∈ Q is the initial state

Let Π denote the LTS 〈{π},Act, ∅, π〉. An LTS M = 〈Q,αM, δ, q0〉 is non-
deterministic if it contains τ -transitions or if there exists (q, a, q′), (q, a, q′′) ∈ δ
such that q′ 6= q′′. Otherwise, M is deterministic.

2.2 Traces

A trace t of LTS M is a finite sequence of observable actions that label the
transitions that M can perform starting from its initial state (ignoring the un-
observable τ -transitions). We sometimes denote by t both a trace and its trace
LTS. For a trace t of length n, its trace LTS lts(t) consists of n+ 1 states, such
that there is a transition between states i and i+ 1 on the ith action in trace t,
for 1 ≤ i ≤ n. The set of all traces of an LTS M is the language of M ,denoted
L (M); errTr(M) denotes the set of traces that lead to π, which are called the
error traces of M .

For Σ ⊆ Act, we use t ↑ Σ to denote the trace obtained by removing from
t all occurrences of actions a /∈ Σ. Similarly, M ↑ Σ is defined to be an LTS
over alphabet Σ which is obtained from M by renaming to τ all the transitions
labeled with actions that are not in Σ.

2.3 Parallel Composition

Let M = 〈Q,αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉. M transits into M ′ with

action a, written M
a−→ M ′, if and only if (q0, a, q

′
0) ∈ δ and either Q = Q′,

αM = αM ′, and δ = δ′ for q′0 6= π, or, in the special case where q′0 = π, M ′ = Π.
The parallel composition operator ‖ is a commutative and associative opera-

tor that combines the behavior of two components by synchronizing the common
actions and interleaving the remaining actions.

Formally, let M1 = 〈Q1, αM1, δ
1, q10〉 and M2 = 〈Q2, αM2, δ

2, q20〉 be two
LTSs. If M1 = Π or M2 = Π, then M1 ‖ M2 = Π. Otherwise, M1 ‖ M2 is an
LTS M = 〈Q,αM, δ, q0〉, where Q = Q1 ×Q2, q0 = (q10 , q

2
0), αM = αM1 ∪ αM2,

and δ is defined as follows, where a is either an observable action or τ :

M1
a−→M ′1, a /∈ αM2

M1 ‖M2
a−→M ′1 ‖M2

M2
a−→M ′2, a /∈ αM1

M1 ‖M2
a−→M1 ‖M ′2

M1
a−→M ′1, M2

a−→M ′2, a 6= τ

M1 ‖M2
a−→M ′1 ‖M ′2



2.4 Safety Properties

In our context, properties are modeled as safety LTS’s. A safety LTS is a deter-
ministic LTS that contains no π states. A safety property is specified as a safety
LTS P , whose language L (P ) defines the set of acceptable behaviors over αP .

For an LTS M and a safety LTS P such that αP ⊆ αM , we say that M
satisfies P , denoted M |= P , if and only if ∀t ∈ L (M) : (t ↑ αP ) ∈ L (P ).

When checking a property P , an error LTS denoted Perr is created, which
traps possible violations with the π state. Formally, the error LTS of a property
P = 〈Q,αP, δ, q0〉 is Perr = 〈Q ∪ {π}, αPerr , δ

′, q0〉, where αPerr = αP and

δ′ = δ ∪ {(q, a, π) | q ∈ Q, a ∈ αP, and 6 ∃q′ ∈ Q : (q, a, q′) ∈ δ}

Note that the error LTS is complete (except for π), meaning each state other
than the error state has outgoing transitions for every action in its alphabet.
Also note that the error traces of Perr define the language of P ’s complement.

As an example, consider the communication channel in Figure 1. It consists
of an Input and an Output component; grey states are initial states. Actions
send and ack are common to the alphabets of the two components and will be
synchronized when the LTSs are composed. Property Order states that inputs
and outputs come in matched pairs with input always preceding output. The
error state is colored red.

2.5 Assume-Guarantee Reasoning

Concurrent software is inherently difficult to analyze. The problem of reaching
a specific global state in a system with N finite-state components can be shown
to be PSPACE-complete in N . What this means in practice is that the number
of states in a concurrent system may in the worst case be exponential in the size
of the components of the system.

One approach to dealing with this state explosion problem is compositional
or local reasoning. In essence, the goal of compositional reasoning is to replace
the analysis over the global state space with localized analyses, which consider
each component by itself, together with a small abstraction of the environment
of that component. The intuition behind this principle is that many systems can
be viewed as “loosely coupled” collections of components; that is, the proportion
of the behavior of one component behavior which influences that of another is
small. Hence, there should be an advantage to doing localized reasoning.

Assume-guarantee reasoning [19, 24] is a compositional verification technique
that uses assume-guarantee rules for verification. Assume-guarantee rules are
proof rules that show how, by performing local verification steps on individual
components of the system, one can safely deduce properties that refer to the
entire system. The local verification steps usually involve some abstraction of
the environment of each component, named assumption.

In the assume-guarantee reasoning paradigm, formulas are triples of the type
〈A〉 M 〈P 〉, where M is a component, P is a property, and A is an assumption



about M ’s environment. The formula is true if whenever M is part of a system
satisfying A, then the system must also guarantee P , i.e., ∀E, E ‖ M |= A
implies E ‖M |= P . For LTS M and safety LTSs A and P , checking 〈A〉 M 〈P 〉
reduces to checking if state π is reachable in A ‖ M ‖ Perr . Note that when
αP ⊆ αA ∪ αM , this is equivalent to A ‖ M |= P . Also note that we assume
that M contains no π states.

The simplest assume guarantee rule is for checking a safety propery P on a
system with two components M1 and M2.

Rule ASym

1 : 〈A〉 M1 〈P 〉
2 : 〈true〉 M2 〈A〉
〈true〉 M1 ‖M2 〈P 〉

In this rule, A denotes an assumption about the environment of M1. Note
that the rule is not symmetric in its use of the two components, and does not sup-
port circularity. Despite its simplicity, experience with applying compositional
verification has shown this rule to be most useful in the context of checking
safety properties. This rule can be extended for multiple components. Several
other rules have also been defined in the literature. We have experimented with
several rules in practice [23].

Weakest Assumption. For a given LTS component M and safety property P
there is a natural notion of the weakest assumption Aw, such that 〈Aw〉 M 〈P 〉
holds. Aw characterizes all the possible environments E under which the property
holds, i.e.∀E : M ‖ E |= P if and only if E |= Aw.

2.6 The L* Algorithm

L* is a learning algorithm that was developed by Angluin [2] and later improved
by Rivest and Schapire [25]. L* learns an unknown regular language and produces
a DFA that accepts it. Let U be an unknown regular language over some alphabet
Σ. In order to learn U , L* needs to interact with a Minimally Adequate Teacher,
from now on called Teacher. A Teacher must be able to correctly answer two
types of questions from L*. The first type is a membership query, consisting of a
string σ ∈ Σ∗; the answer is true if σ ∈ U , and false otherwise. The second type
of question is a conjecture, i.e., a candidate DFA C whose language the algorithm
believes to be identical to U . The answer is true if L (C) = U . Otherwise the
Teacher returns a counterexample, which is a string σ in the symmetric difference
of L (C) and U .

At a higher level, L* creates a table where it incrementally records whether
strings in Σ∗ belong to U . It does this by making membership queries to the
Teacher. At various stages L* decides to make a conjecture. It constructs a
candidate automaton C based on the information contained in the table and asks
the Teacher whether the conjecture is correct. If it is, the algorithm terminates.
Otherwise, L* uses the counterexample returned by the Teacher to extend the
table with strings that witness differences between L (C) and U .



Characteristics of L*. L* depends on the correctness of the Teacher in order
to provide a number of guarantees. More specifically, L* is guaranteed to termi-
nate with a minimal automaton for the unknown language U . Moreover, each
candidate DFA C that L* constructs is smallest, in the sense that any other
DFA consistent with the information provided to L* has at least as many states
as C. This characteristic of L* makes it particularly attractive in the context
of learning interfaces or assumptions, since in the frameworks that we describe,
the candidates provided by L* are combined with component models in model
checking steps. Smaller state machines typically result in easier model checking
problems. The conjectures made by L* strictly increase in size; each conjecture
is smaller than the next one, and all incorrect conjectures are smaller than the
minimal automaton for language U. Therefore, if that minimal automaton has n
states, L* makes at most n−1 incorrect conjectures. The number of membership
queries made by L* is O(kn2 + n logm), where k is the size of the alphabet of
U , n is the number of states in the minimal DFA for U , and m is the length of
the longest counterexample returned when a conjecture is made.

3 Component Interfaces

An interface characterizes the expectations that a component has from its en-
vironment. As discussed in the introduction, there is a recognized need for ex-
tending component interfaces beyond their traditional, purely syntactic form. In
this tutorial paper, we focus on interfaces that describe legal sequences of ser-
vice invocations or method calls to a component. For example, an interface may
describe the fact that closing a file before opening it is undesirable because an
exception will be thrown. An ideal interface should precisely represent the com-
ponent in all its intended usages. In other words, it should include all the good
interactions, and exclude all problematic interactions. We describe this formally
in the following.

Let Σ be the set of interaction points of an LTS M , where Σ ⊆ αM . A
word over Σ is considered legal if its execution cannot lead M to an error state,
and is considered legal otherwise. Accordingly, we define two additional language
sets for any LTS M . We use the term Lillegal(M) = errTr(M) to refer to the
set of illegal executions of LTS M . The set of legal executions is defined as
Llegal(M) = Σ∗ \Lillegal(M). Note that we slightly abuse the term “executions”
in this context, since the set of legal executions may contain words that cannot
execute to completion in M , meaning that they do not correspond to traces in
L (M). The reason why it is desirable to consider such words in the set of legal
executions is that such words should never be disallowed in the behavior of M ’s
environment since they can never be executed in the context of M , and could
therefore never lead M to an error state.

Let us now assume that a component is represented as an LTS M , with Σ
being the set of its interaction points with the environment. Assume also that
an interface A is represented as an LTS over Σ. Then A is a precise interface for
M if it satisfies two conditions:



1. Safe. Interface A is safe for M iff Llegal(A) ∩ Lillegal(M ↑ Σ) = ∅. Infor-
mally, this definition says that any legal word w in A can only trigger legal
executions in M .

2. Permissive. Interface A is permissive for M iff Llegal(M ↑ Σ) ⊆ Llegal(A).
Informally, every legal word in M should be represented by some legal word
in A.

Note that safety is concerned with blocking behaviors while permissiveness is
concerned with including behaviors. These two concepts are complementary in
achieving an exact characterization of correct component usage. When dealing
with component interfaces, it is therefore important to be able to determine
whether a given interface is safe and permissive.

Let M = 〈QM , αM, δM , q0M 〉 be the LTS description of a component, and
let A = 〈QA, αA, δA, q0A〉 be an interface provided for M .

Checking for safety. Interface A is safe for M if and only if illegal states of
M are not reachable in A ‖M . Interface safety can therefore be performed by a
reachability check, as supported by any standard model checker. Counterexam-
ples correspond to illegal executions of M that are not blocked by A.

Fig. 2. Safety Check

Figure 2 is used to illustrate the safety check. States M0, M1, M2 and Merror

belong to component M while states A0 and A1 belong to interface A. The error
state is no longer reachable in the composition.

Checking for permissiveness. To check permissiveness, we need to complete
M with a sink state to obtain Mc, and A with an error state to obtain Aerr. In
Mc ‖ Aerr, we then check for reachability of states that correspond to an error
state in Aerr and a non error state in Mc. A path leading to such states could



identify a legal word in Mc that is not accepted by A, reflecting the fact that A is
not permissive. However, this check is not sufficient to determine permissiveness
of an interface. This is illustrated by an example below.

Fig. 3. Checking for Permissiveness

The example in Figure 3 shows the problem with the permissiveness check
above. As before, states M0, M1, M2, Merror belong to M and states A0, A1

and Aerror belong to interface A. According to the above check, trace a, b lead-
ing to state [M1, Aerror] in the composition could be an indication that A is
not permissive enough. However this is not true, since the same path leads to
[Merror, Aerror]. This happens because the alphabet of the assumption is {a, b},
meaning that action c in M is considered as a τ from the point of view of A. In
the figure, this is illustrated as a τ action covering action c.

This example illustrates the fact that non-determinism in component M
may cause spurious counterexamples in the permissiveness reachability check
described above. As a consequence, precise characterization of permissiveness
requires determinization of component M , which can be performed using subset
construction. The permissiveness check is therefore NP-hard [1], and can be
inefficient in practice.

Several approaches have been proposed to deal with this problem. Unless
determinization is a viable solution for a targeted component M [14, 3], heuristic
approaches are often used to determine whether a counterexample is spurious [1,
13]. Also, if non determinism is introduced through abstraction of a deterministic
concrete component, this problem can sometimes be avoided, using a combina-
tion of over- and under- approximating abstractions [26].

In the next sections we discuss some of these solutions. We first present
an approach that creates a safe and permissive interface by construction, and
which involves determinization of the component. Subsequently, we describe an
iterative learning-based approach that is based on safety and permissiveness



checks and which uses heuristics to avoid determinization of the component. We
then discuss interface generation in the context of infinite-state components and
abstraction.

4 Automated Interface Generation

Precise characterization of component interfaces is a difficult task to perform
manually. Given the need for automated modular or compositional verification
techniques warranted by the size of modern software and hardware systems, au-
tomated interface and assumption generation have been thoroughly investigated
in the last decade. Our first attempt to automated interface generation consists
of a construction that systematically builds finite-state machine interfaces for
finite-state components and safety properties expressed as LTSs [14]. The built
interfaces are safe and permissive by construction. Learning-based approaches
to interface generation are subsequently discussed. These frameworks are based
on the use of the L* algorithm for providing and gradually refining guesses of
the desired interface.

4.1 Computing the Weakest Assumption

Fig. 4. Model Checking with Assumption Generation

We describe here an approach to building the weakest assumption for a com-
ponent with respect to a safety property. The approach addresses the more
general problem of model checking for open systems, i.e. components that in-
teract with their environments. When model checking a component against a
property, our algorithm returns one of the following three results: (i) the compo-
nent satisfies the property for any environment; (ii) the component violates the
property for any environment; or finally, (iii) the “weakest assumption” – an au-
tomatically generated assumption that characterizes exactly those environments
in which the component satisfies the property.



The traditional approach to verifying a property of an open system is to check
it for all the possible environments. The result of verification is either true, if the
property holds for all the possible environments, or false, if there exists some
environment that can lead the component to falsify the property. However this
approach may be overly pessimistic and we advocate an optimistic view, which
assumes a helpful environment. The reason is that software components are often
required to satisfy properties only in specific environments, so it is natural to
accept a component if there are some environments in which the component does
not violate the property.

In our approach, the result of component verification is true, if the property
holds for all environments, similar to the traditional approach. However, the
result is false only if the property is falsified in all environments. If there exist
some environments in which the component satisfies the property, the result
of verification is not false, as in the traditional approach, but rather true in
environments that satisfy the weakest assumption.

Figure 4 illustrates our approach together with the steps we follow to build
the weakest assumption (that are described below).

Step 1: Composition and Minimization

step 1: composition & hiding  

send 

ack 

Input ||  Ordererr \ {in} 

0 1 2 3 

4 

ack 

send out 

out 

out 

out 

out 

out 

5 

Input Output 
in send 

ack 

out 

τ	
in 

τ	
in 

Fig. 5. Step 1: Composition and Hiding

Given an open system (described as an LTS) and a property LTS that may relate
the behavior of the system with the behavior of the environment, the first step
is to build the composition of the system with the error LTS of the property and
to hide (i.e., turn into τ) the internal actions of the system. The resulting LTS
can be minimized with respect to any equivalence that preserves (error) traces.



As an example, let us consider the communication channel from Section 2.
We show here the computation of the weakest assumption for component Input
with respect to property Order. Figure 5 depicts the result of composing Input

with the error automaton for the property. The internal actions of the system,
i.e. the transitions labeled in, were abstracted to τ . This is illustrated in Figure 5
by covering action in with action τ .

If the error state is not reachable in this composition, the property is true
in any environment, and this is reported to the user. Otherwise, we determine
whether there exist environments that can help the system avoid the error; this
is achieved through the following steps.

Step 2: Backward Error Propagation

Fig. 6. Step 2: Error Propagation

This step first performs backward propagation of the error state over τ transi-
tions, thus pruning the states where the environment cannot prevent the error
state from being entered via one or more τ steps. We are interested only in the
error traces, and therefore we also eliminate the states that are not backward
reachable from the error state. If, as a result of this transformation, the initial
state becomes an error state, it means that no environment can prevent the sys-
tem from reaching the error state, so the property is false (for all environments)
and this is reported to the user.

Consider again the composite system in Figure 5. As a result of backward
propagation, we identify state 5 with the error state; the result is shown in
Figure 6. The intuition here is that, if the component is in a state from which it



can violate the property by some number of internal moves, then no environment
can prevent the violation from occurring.

Step 3: Property Extraction

Fig. 7. Step 3: Property Extraction

This step builds the property LTS that is our assumption. It performs this in two
stages; first it builds the error LTS for the assumption, from which it extracts
the corresponding property LTS. Note that the LTS resulting from Step 2 might
not be an error LTS (i.e. it might not be deterministic or complete), although it
contains an error state. Recall from the background section that the error LTS
is both deterministic and complete.

In order to get an error LTS we make the LTS obtained from step 2 deter-
ministic by applying to it τ elimination and the subset construction [18], but
by taking special care of the π state as follows. During subset construction, the
states of the deterministic LTS that is being generated are sets of states in the
original non-deterministic LTS. If any of these sets contains π, the entire set
becomes π. Intuitively, a trace that non-deterministically may or may not lead
to an error has to be considered as an error trace. Such non-determinism reflects
the fact that, by performing a particular sequence of actions, the environment
cannot guarantee that the component will avoid error states.

The resulting LTS is then completed. Completion is performed by adding
a new “sink” state to the LTS, and adding a transition to this state for each
missing transition in the “incomplete” LTS. The missing transitions in the in-
complete LTS represent behavior of the environment that is never exercised by
the open system under analysis. As a result, no assumptions need to be made
about these behaviors. The sink state reflects exactly this fact, since it poses no
implementation restrictions to the environment.



Fig. 8. Computed Assumption

The result of subset construction and completion for our running example is
shown in Figure 8. The sink state is colored green.

Once we have the error LTS, we obtain the assumption by deleting the error
state and the transitions that lead to it.

The assumption for the running example is depicted in Figure 8. The as-
sumption expresses the fact that actions send, out, ack should happen in this
order (and this is in fact the encoding of component Output); in addition, the
assumption allows extra behaviors (the ones that lead to the sink state). It can
be shown that indeed this assumption is the “weakest”.

4.2 Learning Component Interfaces

Let M = 〈QM , αM, δM , q0M 〉 be a component, and Σ ⊆ αM denote the com-
munication alphabet of component M , i.e., the set of actions through which M
communicates with its environment. Our goal is to compute M ’s precise inter-
face as a finite state automaton A over Σ, in other words an interface A that is
both safe and permissive, as defined in Section 3.

Since A represents a regular language, we can use the learning algorithm L*
to learn it. To this aim, we need to provide L* with a teacher that represents the
language of A. As discussed in the following, the teacher can be implemented
using model checking, since all questions asked by L* can be reduced to reach-
ability problems (see Figure 9).

Queries L* is first used to repeatedly query M to check whether, in the context
of strings s, M reaches an error state. If it does, then s corresponds to an illegal
execution of M and should be excluded from A and the query returns false.
Otherwise, s should be included in A, and the query returns true. If error states
are introduced by some property P , then the query corresponds to checking the
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Fig. 9. Learning for Context Synthesis

triple 〈s〉 M 〈P 〉 as illustrated in Figure 9 (we abuse notation here, and use s to
represent lts(s)).

Conjectures The conjectured automaton A is checked for correctness, which
in this context means checking whether the interface that it represents is safe
and permissive. We therefore break down answering conjectures into two parts:

Oracle 1 checks if A is safe, using the model checking procedure described in
Section 3. Again, if error states are introduced by some property P , the safety
checks corresponds to checking the triple 〈A〉 M 〈P 〉, as illustrated in Figure 9. If
A is safe, then the teacher proceeds to Oracle 2. If it is unsafe, the model checker
returns a counterexample t. The resulting counterexample t, projected on the
interface alphabet Σ, is returned to L* to refine its conjecture (see Figure 9,
where c = t ↑ Σ). The projection is necessary because L* needs counterexamples
in terms of the alphabet over which it is learning.

Oracle 2 checks if safe interface A is also permissive, using the model check-
ing procedure described in Section 3. If the interface is permissive, then the
framework terminates with A as a safe, permissive and minimal interface for M
(minimality is guaranteed by the characteristics of the L* algorithm). If, on the
other hand, a counterexample t is returned, then this may be because the inter-
face needs to be refined, or it could be because the permissiveness procedure is
not precise in the presence of non-determinism. As discussed above, one could
determinize component M for performing this check. Other, more light-weight
approaches propose heuristics.



For example, one such heuristic consists of making a query on c = t ↑ Σ (with
the same mechanism as L* queries are answered). If the query returns true, then
it means the interface is not permissive, and therefore c is returned to L* for
refinement, and the learning process continues with more queries and eventually
with a new conjecture (see Figure 9).

If the query returns false, then c does not correspond to a real counterexam-
ple. Model checking therefore ignores this state. Several approaches have been
proposed at this point. One approach applies an additional heuristic step [1],
whereas another backtracks after the spurious counterexample and continues the
state space exploration [13]. The latter approach is illustrated in Figure 10. This
heuristic is non-trivial to implement within a model checker. The reason is that
the permissiveness check consists of a reachability check within which a query
is invoked to potentially invalidate a discovered counterexample, in which case
the reachability check backtracks and continues the search. In essence, querying
within a reachability check would naively mean that a model checker is invoked
within a model checker, which is clearly inefficient.

permissiveness check 
MC: model check for (Mi, Aerror) 

c = t ↑ Σ  

backtrack and continue search 
if (memoized(c) == false) // c is spurious 

if (query(c) == yes) 
return c to L* // not permissive  

else  // memoized(c) == true or c not in memoized  
model checker produces c 

else restart at MC   

reached (Mi, Aerror) by trace t 

Fig. 10. Permissiveness heuristic

For this reason, all query results are stored in a memoized table which is
consulted during reachability analysis. If a potential counterexample discovered
is stored in the memoized table as a spurious one, then the algorithm backtracks
and tries a different path. If it is a real counterexample, it is returned to L*. If it
is not stored in the table, the reachability check terminates. A query then follows
as an independent step, and the reachability check is started from scratch. Since
the result of the query is stored in the memoized table, the reachability check is
guaranteed to return a different counterexample in the next round.



Non-determinism: In summary, unless component M is deterministic with
respect to the alphabet Σ of the assumption, precise interfaces can only be
computed through determinization of M , which may result in a component ex-
ponentially larger than M . Heuristics can be quite efficient at getting a precise
interface, but cannot provide guarantees. Of course, if the permissiveness check
does not encounter spurious counterexamples, then we know that the resulting
interface is precise, despite heuristics.

There are two cases where determinization can be avoided, as will be de-
scribed in the following sections. First, when the potential source for non-determinism
is abstraction of a deterministic infinite state component, then we may use a
combination of over- and under- approximations to precisely compute a com-
ponent interface while avoiding determinization in the permissiveness step. Sec-
ond, when the environment of a component is available, determinization can
be avoided during compositional reasoning. Since in this context, rather than a
precise interface for the component irrespective of environment, we just need the
interface to act as an assumption for an assume-guarantee rule, the environment
can be used to selectively increase the interface permissiveness. We discuss these
cases in the following sections.

5 Interface Generation and Abstraction

The learning frameworks that we discussed in the previous section only apply to
finite state components since they rely on teachers that exhaustively explore the
component state space. However, most realistic components are infinite state for
all practical purposes. A typical approach for dealing with large components in
model checking is by using abstraction techniques. In this section, we discuss a
framework that computes interfaces of potentially infinite-state components by
combining abstraction and learning approaches.

There are two types of abstractions that one may built of a component. An
over-approximation (“may” abstraction) is an abstraction that contains a super-
set of the behaviors of the component. The advantage of over-approximations
is that, when used for checking properties, if the property is satisfied for the
overapproximation, then it is also satisfied for the concrete component. The dis-
advantage is that when a counterexample is obtained, it may be a spurious one,
since it may correspond to a behavior that is not really feasible in the con-
crete component. These characteristics are reversed for under-approximations.
An under-approximation (“must” abstraction) contains only a subset of the be-
haviors of the concrete component. As such, it will only return real counterexam-
ples. In the absence of errors, however, there is not guarantee that the concrete
component is also error-free since there may be concrete behaviors that are not
accounted for in the under-approximation.

The may and must abstractions that we use [26] are obtained using predi-
cate abstraction. Predicate abstraction is a technique that substitutes component
variables on large or infinite domains with a finite set of predicates over these
variables. Concrete states of the component are then substituted with abstract



may and must abstraction 

!   may abstraction produces a finite over-approximation 
!   must abstraction produces a finite under-approximation 

must	  transi*on	   may	  transi*on	  

Cmust	  

	  	  	  C	  
Cmay	  

Fig. 11. May and Must Abstraction

states representing valuations of the selected predicates. In a may abstraction, an
abstract transition links two abstract states if there exists a concrete transition
between concrete states represented by the two abstract states. May transitions
between abstract states may or may not correspond to actual transitions in the
concrete system. A may abstraction is an over-approximation (see Figure 11).
On the other hand, in a must abstraction, abstract transitions link two ab-
stract states only if all the concrete states represented by the two abstract states
are linked by concrete transitions. Must transitions are guaranteed to represent
transitions in the concrete system, but do not necessarily cover all concrete tran-
sitions. A must abstraction is therefore an under-approximation of the concrete
component (see Figure 11).

Let C be a component corresponding to a potentially infinite-state transition
system SC . From now on, for simplicity, we will use C to represent the compo-
nent and its transition system. We have proposed interface-generation algorithms
that operate by analyzing finite-state abstractions of C [26]. The essence of our
approach lies in the following observation:

Theorem 1. Assume a component C, a may abstraction Cmayand a must ab-
straction Cmustfor C. If an interface Afor C is permissive with respect to Cmustand
safe with respect to Cmay, then Ais safe and permissive with respect to C.

To provide an intuition for this theorem, let us analyze the relationships
between the languages corresponding to may and must abstractions. For any
component C, since Cmayhas more behaviors that C, it follows that Lillegal(C) ⊆
Lillegal(C

may), and consequently, Llegal(C) ⊇ Llegal(C
may). On the other hand,

Lillegal(C) ⊇ Lillegal(C
must), and consequently, Llegal(C) ⊆ Llegal(C

must). If an
interface A is safe with respect to Cmay, it means that its legal executions are



safe and permissive interfaces for infinite state components 
Lillegal	  (Cmay)	  

Lillegal	  (C)	  

Lillegal	  (Cmust)	  

Llegal	  (Cmust)	  

Llegal	  (C)	  

Llegal	  (Cmay)	  

A permissive  A safe  

Fig. 12. Relationship between languages of abstractions of a concrete component and
the component itself

a subset of the legal executions of Cmay. Similarly, if A is permissive, its illegal
executions are a subset of the illegal executions of Cmust. These relationships are
illustrated in Figure 12. Given the complementary nature of the legal and illegal
execution sets of any component, an interface can only have both properties if
Lillegal(C

must) = Lillegal(C) = Lillegal(C
may) = Lillegal(A).

Our approach for interface generation is therefore based on constructing may
and must abstractions for a concrete component C(Cmayand Cmust, respec-
tively). Its novelty with respect to previous work is that it uses Cmayto check
whether an interface is safe, and Cmustto check whether an interface is permis-
sive. The advantage of the approach is that, if the concrete component is deter-
ministic, then so is Cmust, since it under-approximates the concrete behavior.
By using Cmustfor the permissiveness check, we therefore avoid determinizing
the abstractions that are constructed, while still providing guarantees for safety
and permissiveness of the computed interface.

5.1 Learning interfaces using abstractions

In order to compute an interface for component C, we use the learning frame-
work presented in the previous section. The teacher is very similar, except that
it sometimes needs to trigger a refinement of the abstraction, in order to pro-
vide answers to the learner. Refinement consists of adding predicates, and it
is performed on demand, within the teacher’s mechanism for answering the L*
questions. More specifically, the teacher operates as follows.

Queries. The procedure for queries is illustrated in Figure 13. It first checks
whether the word σ triggers an illegal execution in Cmust. If it does, σ should not



Query(σ, C)  

1.  if checkSafe(σ,Cmust) != null 
2.         return “false” 
3.  cex = checkSafe(σ,Cmay) 
4.  if cex == null 
5.         return “true” 
6.  Preds = Preds U Refine(cex) 
7.  Query(σ, C) 

Fig. 13. Answering queries

conjecture : Oracle 1 

1.  cex = checkSafe(A, Cmay) 
2.  if cex == null 
3.         invoke Oracle2 
4.  If Query(cex, C) == “false” 
5.         return cex to L* 
6.  else 
7.  goto 1 

Fig. 14. Answering conjectures: Oracle 1



conjecture : Oracle 2 

1.  cex = checkPermissive(A, Cmust) 
2.  if cex == null 
3.         return A 
4.  If Query(cex, C) == “true” 
5.         return cex to L* 
6.  else 
7.  goto 1 

Fig. 15. Answering Conjectures: Oracle 2

belong to A because it must also trigger an illegal execution in C. So the query
returns false. Otherwise, σ is checked against Cmay. If it is safe for Cmay, then
σ must belong to A so the query returns true. Otherwise, we have a situation
where σ is safe for Cmustand unsafe for Cmay. In other words, σ demonstrates
that the illegal languages of Cmayand Cmustare not equal. As discussed earlier
in the section, we are able to compute an interface when the illegal languages of
Cmayand Cmustbecome equal. We therefore need to refine the abstraction, and
check the query again. L* is not involved in the refinement or restarted after
it; it just awaits for the teacher to come up with a response to the query. The
response is always consistent with the concrete component C.

Conjectures. We use Theorem 1 to answer the conjectures using two oracles,
as illustrated in Figure 14 and Figure 15.

Oracle 1 is invoked first. If it finds that A is safe with respect to Cmay, Oracle
2 gets invoked. If Oracle 2 finds that A is also permissive with respect to Cmust,
we conclude from Theorem 1 that A is a safe and permissive interface for C. All
remaining cases require either the refinement of A by L*, or the refinement of
the component abstractions. We use queries to help us determine what needs to
be refined. Our approach is described in detail below.

Oracle 1: If A is not safe with respect to Cmay, we obtain a counterexample
cex, which is allowed by A but leads to error in Cmay. We subsequently query cex
in order to determine whether it is indeed a counterexample to the safety of A.
Note that the querying procedure may involve refinement of the abstraction. If
the query returns no, then it means that cex should indeed not be in the language
of A, so cex is returned to L* for A to be refined. Otherwise, we invoke Oracle



1 again, knowing that Predshave been updated because abstraction refinement
must have occurred.

Oracle 2: If A is not permissive with respect to Cmust, we obtain a coun-
terexample cex, which corresponds to a word that is not allowed by A. We
subsequently query cex in order to determine whether it is indeed a counterex-
ample to the permissiveness of A. If the query response is positive, then cex
should belong to A, so cex is returned to L* for refining the assumption. Note
again that querying may involve refinement. If the response in negative, then the
permissiveness check is invoked again, because we know there must have been
abstraction refinement involved.

More details and explanations are provided in [26].

5.2 Applicability and Related Approaches

The learning scheme presented in this section for computing interfaces of infinite
state components generates deterministic finite state automata. As such, its ap-
plicability is restricted to interfaces that can be represented in this fashion. The
framework that we have developed may not always termine, which is always a
possibility in abstraction refinement schemes. However, if the concrete compo-
nent C has a finite bisimulation quotient, then our framework is guaranteed to
terminate and produce a minimal safe and permissive interface for C [26].

Other related approaches to inteface generation for infinite components have
been presented in [1, 17]. Both approaches construct only over-approximations of
the component behavior, which may be non-deterministic. As mentioned, check-
ing permissiveness when (abstracted) components are non-deterministic requires
a potentially expensive determinization step. Alur et al. [1] avoid this step by
using heuristics, and therefore cannot guarantee permissiveness of the generated
interfaces. On the other hand, Henzinger et al. [17] build “abstract regions”,
which is equivalent to performing a determinization step. Furthermore, the ab-
straction mechanisms in [17] cannot guarantee minimal interfaces. Even if these
interfaces were to be minimized, this approach would suffer from potentially
large intermediate interfaces that subsequently get compacted. This latter prob-
lem is more pronounced in the presence of the determinization step, which is
exponential, in the worst case. In contrast, L*-based approaches like ours and
[1] directly generate minimal interfaces. Note however that the technique by [1]
does not provide criteria to automatically detect the need for abstraction refine-
ment. Their refinements are based on inspection of the generated interfaces, and
are performed manually. In contrast, refinement in our work [26] is performed
automatically.

6 Assumption Generation for Compositional Verification

As discussed in Section 2, assume guarantee reasoning provides solutions to the
problem of decomposing the verification of a large system into local verification



steps of the system components. The most challenging part of applying assume-
guarantee reasoning, however, is coming up with appropriate assumptions to use
in the application of the assume-guarantee rules. In this section, we discuss work
on generating assumptions for automated assume-guarantee verification.

We will restrict ourselves to the simple rule presented in Section 2, and will
then discuss how one can expand to other rules.

As discussed earlier in this paper, the weakest assumption captures precisely
all restrictions that a component needs to make on its environment in order to
satisfy some safety property(ies). The weakest assumption can safely be used for
assume-guarantee reasoning; in fact, with the weakest assumption, the rule also
becomes complete since, the second premise holds (〈true〉 M2 〈A〉) if and only if
the conclusion of the rule holds (〈true〉 M1 ‖M2 〈P 〉).

permissiveness check for AG reasoning 
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Fig. 16. Learning Assumptions for Assume-Guarantee Reasoning

The weakest assumption corresponds to a safe and permissive interface for
component M1. We could therefore use L* to learn this assumption while auto-
matically verifying a property on some system in an assume guarantee style. The
framework of Figure 16 demonstrates the steps involved in performing automated
assume-guarantee reasoning while learning the weakest assumption. Queries are
asnwered in the exact same fashion as in the interface generation framework of
Figure 9. The first Oracle, checking whether the conjecture corresponds to a safe
interface for M1, is answered identically to the interface generation framework.
Note that checking for safety corresponds to checking the first premise of the
assume-guarantee Rule ASym.

In terms of the permissiveness check, we can now take advantage of the
fact that M2 is available, to avoid determinization of M1. Remember that our
main target in this framework is to prove or disprove a property on the system



using assume-guarantee reasoning. Since Oracle 1 checks that premise 1 of Rule
ASym holds, it remains to check premise 2 (〈true〉 M2 〈A〉). Premise 2 therefore
substitures Oracle 2 of the original interface generation framework. If this check
passes, then we know that both premises of Rule ASym hold, and therefore the
property holds for M1 ‖M2.

If the check fails, the Teacher performs some analysis to determine the under-
lying reason (see Figure 16). The Teacher performs a query (of the L* type) in
order to determine whether the returned counterexample cex, projected to the
alphabet of the assumption, should belong to the conjectured assumption A. If
the answer is true, meaning that c ↑ αA should be included in A, then it means
that A is not the weakest assumption since it does not include a safe word, and
c ↑ αA is returned to L* for refinement of A. If, on the other hand, the answer
is false, it means that c is a word that belongs to M2, in the context of which
M1 violates the property P . As a consequence, M1 ‖ M2 does not satisfy the
property P .

Notice that the answers that this modified Teacher provides to L* are always
with respect to the weakest assumption. However, the framework uses M2 to
filter which missing words to include in the language of the assumption, as
opposed to adding all of them. The reason is that we restrict our reasoning to a
specific context, rather than accounting for all possible contexts. As a result, we
no longer require determinization of component M1.

Note also that we do not always obtain the weakest assumption from this
framework; in other words, the obtained assumption is not the most permissive.
Our primary goal is to obtain conclusive results from the assume guarantee rule.
As soon as we are able to prove or disprove the property in the system, we
stop refining the learned assumptions. At that point, we may, or may not have
reached the weakest assumption. We will however have reached an assumption
that completes our verification; this assumption is smaller than or equal to the
weakest assumption, as guaranteed by the characteristics of L*. For our running
example, the assumption generated is smaller than the weakest assumption, as
illustrated in Figure 17. The second conjecture, A2, generated by L*, passes
both Oracles and the learning framework terminates reporting that the property
holds; notice that A2 has only two states as compared to the weakest assumption
that has four states (see Figure 8).

Given the fact that our Teacher only comes back to L* for refinement with
counterexamples for the weakest assumption, the framework will eventually con-
verge to the weakest assumption unless it terminates earlier. We have shown [23]
that with the weakest assumption, the rule becomes sound and complete, and
therefore our framework will return a conclusive answer at that iteration. As a
result, the framework always terminates.

To summarize, we presented a framework that computes an assumption for
automated assume-guarantee reasoning. We cannot tell if the framework com-
putes the weakest assumption, but we know that it will do so if necessary, and
thus guarantees termination.



conjectures 

 ack 
send 

A1: Oracle 1:  
〈A1〉 Input 〈Order〉 

Counterexample: 
c = 〈in,send,ack,in〉 

Return to L*: 
c↑ Σ = 〈send,ack〉 

Oracle 1:  
〈A2〉 Input 〈Order〉 

True 

Oracle 2:  
〈 true〉 Output 〈A2〉  

True 

 property Order holds  
on Input || Output 

 ack 

 send 

 out, send 

A2: Queries 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 
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ack 

 send 

Fig. 17. Assumption for AG reasoning

6.1 Related Approaches

We have showed how to guide our learning of assumptions for compositional
verification towards the weakest assumption. Other researchers focused on the
more computationally expensive problem of learning a minimal assumption [16,
8] for compositional verification. In other words, computing an assumption Amin

such that any other assumption A that can check satisfaction or violation of P
will have a greater than or equal number of states, i.e., |A| ≥ |Amin|.

The alphabet of the assumptions we learn for compositional verification is
fixed to (αM1 ∪ αP ) ∩ αM2. Other researchers and ourselves observed that it
may sometimes be possible to verify a problem with a smaller alphabet, and
therefore potentially smaller assumptions [23, 6]. Learning assumptions can be
extended for other assume-guarantee rules that are symmetric and may involve
circularity, and may involve multiple components [23]. Rule ASym itself can
be extended to multiple components through recursive invocation. Learning has
also been applied in the context of symbolic and implicit model checking [21, 7],
and of assume-guarantee reasoning for liveness properties [11].

7 Discussion and Conclusions

In this tutorial paper, we reviewed several approaches for context synthesis. Our
context synthesis techniques rely on standard model checking features, such as
reachability analysis and counterexample generation. Over the years, we have
implemented our techniques on top of several well known model-checkers, such
as LTSA [14], SPIN [22], Java PathFinder [13], and ARMC [26]. We have exper-
imented with compositional verification and interface generation techniques in



the context of several applications, mostly involving NASA systems. Our NASA
case studies include a Rover Executive [10, 15, 4], autonomous rendez vous and
docking [5], a resource arbiter for the Mars Exploration Rover [12], and models of
the flight phases of a spacecraft [13, 26]. We have also experimented with existing
benchmarks for compositional verification [12] and for interface generation [26].

In our experience, learning-based interface generation and compositional ver-
ification were most successful when a system has a well-designed component-
based structure, where component interfaces are small. Beyer, Henzinger and
Singh make a similar observation [3]. Moreover, even though abstraction can
be introduced in order to deal with large component implementations, it is still
much harder to generate interfaces at the level of source code. Interface are ide-
ally generated at design time, and are then used in several ways throughout the
life cycle of a component: for compositional verification, concrete component and
system integration testing, runtime verification, and incremental verification in
the presence of component upgrades or substitutions.

Our learning based algorithms for context synthesis are part of the open-
source Java PathFinder tool-set and they are available from the following web-
site: http://babelfish.arc.nasa.gov/trac/jpf/, the jpf-cv project.

Our work on interface generation needs to be extended and matured in order
to make it applicable in practice. There are several interesting future research
directions. Some of them involve the generation of interfaces that go beyond
purely functional properties such as safety and liveness, but potentially timed
or probabilistic properties. Moreover, it would be interesting to try and identify
design decisions that facilitate the generation of component interfaces. Finally,
one could investigate interfaces in different domains such as service-oriented
systems, aerospace systems, and others.
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